Advanced Search
Search Results
6 total results found
useful links
tools JXG Preview magma PARI/GP https://www.mathcha.io https://jsxgraph.uni-bayreuth.de/wp/index.html https://www.geogebra.org/classic latex symbol recognization || latex symbol recognization 语料库 ref https://dlmf.nist.gov/ math http://mathpr...
目录
notebook 平面几何
test
test math formula: $$\int_0^\infty\frac{1}{1+x^2}dx=\pi/2$$ $\alpha\lt\beta$,$\gamma\pi$ JXG.Options.label.autoPosition = true; JXG.Options.text.fontSize = 24; var board = JXG.JSXGraph.initBoard("bkmrk-jxgbox", {boundingbox: [-5,5,5,-5], axis:false, showCopy...
Menelaus和Ceva定理
Menelaus定理 三角形ABC,D, E, F分别在直线BC, AC, AB上,则D, E, F共线的充分必要条件是:有符号线段比值(反方向取负比值)满足 $$\frac{BD}{DC}\frac{CE}{EA}\frac{AF}{FB}=-1$$ JXG.Options.label.autoPosition = true; JXG.Options.text.fontSize = 18; var board = JXG.JSXGraph.initBoard("bkmrk-jxgbox-menelaus", ...
旋轮线
旋轮线 一个圆在直线上作纯滚动(接触点无滑动),圆上某一点形成的轨迹叫做旋轮线,其参数方程写为 $$ \left\{\begin{array}{cc} x&=&a(\theta-\sin\theta),\\ y&=&a(1-\cos\theta). \end{array} \right. $$ 其中$a$为圆的半径,$\theta$为转动的角度。由参数方程,进行微积分计算,可以得到旋轮线的各种性质,如切线方向,曲线长度,曲线所围面积等。这里采用另外的方法,比较直观地获得曲线的一些性质。旋轮线上点的运动可分解为水平方...
games
2048 fifteen flatris life sudoku sweeper